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CRYSTAL GROWTH AND DENDRITIC SOLIDIFICATION. James A. Sethian, Department of Mathematics, 
University of California, Berkeley, California 94720, USA; John Strain, Courant Institute of 
Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA. 

We present a numerical method which computes the motion of complex solid/liquid boundaries in 
crystal growth. The model we solve includes physical effects such as crystalline anisotropy, surface 
tension, molecular kinetics, and undercooling. The method is based on two ideas. First, the equations 
of motion are recast as a single history-dependent boundary integral equation on the solid/liquid boundary. 
A fast algorithm is used to solve the integral equation efficiently. Second, the boundary is moved by solving 
a “Hamilton-Jacobi”-type equation (on a fixed domain) formulated by Osher and Sethian for a function 
in which the boundary is a particular level set. This equation is solved by finite difference schemes 
borrowed from the technology of hyperbolic conservation laws. The two ideas are combined by 
constructing a smooth extension of the normal velocity off the moving boundary, in a way suggested by 
the physics of the problem. Our numerical experiments show the evolution of complex crystalline shapes, 
development of large spikes and corners, dendrite formation and side-branching, and pieces of solid 
merging and breaking off freely. 

A BOUNDARY ELEMENT SOLUTION FOR TWO-DIMENSIONAL VISCOUS SINTERING. G. A. L. van de Vorst, 

R. M. M. Mattheij, and H. K. Kuiken, Department of Mathematics, University of Technology, 
P.O. Box 513, 5600 MB Eindhoven, THE NETHERLANDS. 

By viscous sintering is meant processes in which a granular compact is heated to a temperature at 
which the viscosity of the material under consideration becomes low enough for surface tension to cause 
the powder particles to deform and coalesce. For the sake of simplicity this process is modeled in a two- 
dimensional space. The governing (Stokes) equations describe the deformation of a two-dimensional 
viscous liquid region under the influence of the curvature of the outer boundary. However, some extra 
conditions are needed to ensure that these equations can be solved uniquely. A boundary element 
method is applied to solve the equations for an arbitrarily initial-shaped fluid region. The numerical 
problems that can arise in computing the curvature, in particular when this is varying rapidly, are 
discussed. A number of numerical examples are shown for simply connected regions which transform 
themselves into circles as time increases. 

EXPLICIT ADAPTIVE-GRID RADIATION MAGNETOHYDRODYNAMICS. Osman Yasar and Gregory A. Moses, 
Department of Nuclear Engineering and Engineering Physics, University of Wisconsirz-Madison, 
1500 Johnson Drive, Madison, Wisconsin 53706, USA. 

An explicit adaptive-grid finite differencing method for one-dimensional radiation magneto- 
hydrodynamics computations is described. Based on the equidistribution principle, this explicit 
procedure moves the grid points to regions with high spatial gradients in physical quantities, such as 
temperature, mass density, pressure, and momentum. The governing magnetic field, radiative transfer, 
and hydrodynamics equations are transformed to the moving adaptive reference frame. The time and 
spatially dependent radiation Iield is determined by solving the radiative transfer equation with the 
multigroup discrete ordinate S, method with implicit time differencing. The magnetic field is solved 
through a diffusion equation resulted from Maxwell’s equations and Ohm’s law. The fluid equations are 
solved using a first-order upwind spatial differencing and explicit time differencing scheme. The coupling 
between the fluid and radiation field is treated explicitly by first solving for the radiation field and then 
the fluid equations. A conservative differencing scheme based on the control volume approach is chosen 
to retain the conservative nature of the governing equations. 


